AGEI Method For Diffusion Equations

نویسندگان

  • Bin Zheng
  • Qinghua Feng
چکیده

In this paper, we present a high order implicit scheme for one dimension heat conduction equations. The scheme is proved to be unconditionally stable. Based on the scheme a class of parallel alternating group explicit iterative method (AGEI) is constructed, and convergence analysis for the method is done. Numerical experiments show that the method is effective in computation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Alternating Group Explicit Iterative Method For Convection-Diffusion Equations

In this paper, based on an unconditionally stable finite difference implicit scheme, we present a concept of deriving a class of effective alternating group explicit iterative method(AGEI) for periodic boundary value problem of convection-diffusion equations, and then give two AGEI methods. The AGEI methods are verified to be convergent, and have the property of parallelism. Results of numerica...

متن کامل

Parallel AGEI Method for Fourth Order Parabolic Equations

Based on a high order absolutely stable implicit scheme, we construct the alternating group explicit iterative method (AGEI) for four order parabolic equations. The method is verified to be convergent, and has the intrinsic parallelism. Results of the convergence analysis shows that the method is of high accuracy.

متن کامل

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

Finite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients

In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...

متن کامل

A numerical method for solving a class of distributed order time-fractional diffusion partial differential equations according to Caputo-Prabhakar fractional derivative

In this paper, a time-fractional diffusion equation of distributed order including the Caputo-Prabhakar fractional derivative is studied. We use a numerical method based on the linear B-spline interpolation and finite difference method to study the solutions of these types of fractional equations. Finally, some numerical examples are presented for the performance and accuracy of the proposed nu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009